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ABSTRACT

We define an invariant for two component spatial graphs. Although the definition of
the invariant is alike a linking number, it is different from the absolute value of a linking
number. We show that the invariant is not a finite type invariant.
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1. Introduction

Graphs are finite, consisting of a finite number of vertices and edges and considered
as a one dimensional CW complex. By a spatial embedding we mean an embedding of
a graph in R? and also an image of an embedding. An image of a spatial embedding
is also called a spatial graph.

Let G = G1 UG, where G, (k = 1,2) is a connected graph such that the degrees
of all vertices are in multiples of 4 and it has an Eulerian circuit which satisfies the
following special condition. An Eulerian circuitis a circuit containing all edges: For
any vertex v, starting from v, we walk along the Eulerian circuit and reach v for
the first time. Then the length of the part of the Eulerian circuit which we walk is
odd, where the length of a circuit is the number of edges of it.

Fig. 1 shows examples of Gj,. We consider the spatial graphs obtained from poly-
gons with odd vertices by doubling edges. They are examples of GGj,. For Eulerian
bipartite graphs, attach loops to their all vertices. Each number of the attached
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loops is half of the degree of the corresponding vertex. These are also examples of

Ahu

Fig. 1.

Let f : G — R® be an embedding and f(G) = G = G; U Gy. We give an
orientation to G' along the Eulerian circuit satisfying the above condition. By
M(G1,Gs) = {co,c1,...,¢m}, we denote the set of all crossing points between
C;’l and C~7’2. When we walk from a crossing ¢g to a crossing ¢; along the orienta-
tion on Gy, dg, (co,ci) means the number of vertices which we passed (k = 1,2).
Let dg(co, ci) = dg, (co,ci) + dg,(co,ci) and we define the number H(G) by the
following.

Y (1)t sgn(e;)

=0

H(G) =

Y

DN | =

where sgn(c;) is the sign of a crossing ¢; in Fig 2.
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Fig. 2.

By a diagram of a spatial graph, we mean a regular projection on R? with over
and under crossing information as a knot diagram. It is known that two diagrams
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represent ambient isotopic spatial graphs if and only if they are transformed into
each other by a finite sequence of (extended) Reidemeister moves (I)~(V) as is
shown in Fig. 3 [1] [5].

The number H(G) is independent of the choice of a base point ¢y and we show
the following theorem.

Theorem 3.2. The number H(G’) is an ambient isotopy invariant for spatial graphs
with special Eulerian circuits.

As for knots, Vassiliev type invariants for spatial graphs are defined in [3] and
[4]. In this paper, we follow the definition in [3].

Let G be a finite graph (with a special Eulerian circuit) and SE(G) the set
of all embeddings of G into R®. Let R be a commutative ring with unit 1 and
v : SE(G) — R an ambient isotopy invariant. And let SE;(G) be the set of all
i-singular embeddings of G into R?, where an i-singular embedding is a continuous
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map whose multiple points are exactly i double points of edges spanning small
flat planes. Such a double point is called a crossing vertexr. Under a given edge
orientation of G, v is extended to an ambient isotopy invariant v; : SE;(G) = R
by the following formula:

vi(fo) = vi-1(fy) —vio1(f-)

where fo, f+ and f_ are related as is shown in Fig. 4. In Fig. 4, a gray vertex means
a crossing vertex (a double point).

AKX

fo f, f.

Fig. 4.

We only consider ambient isotopies that preserve a small flat plane at each
crossing vertex. We say that v is a Vassiliev type invariant of order n if n is the
smallest integer which satisfies that vy41 : SE,+1(G) — R is a zero map. We note
that the definition of a Vassiliev type invariant of order n is independent of the
choice of edge orientations. A Vassiliev type invariant of order m for some integer
m is called a finite type invariant. For the number H(é), we have Theorem 3.3.

Theorem 3.3 The number H(G’) is not a finite type invariant for spatial graphs
with special Eulerian circuits.

2. Linking numbers

We may define a linking number for two component spatial graphs. Let G = G1UG>,
where G}, (k = 1,2) is an Eulerian graph. We fix an Eulerian circuit and give an
orientation on all edges of G}, along the Eulerian circuit. Let f : G — R? be an
embedding and f(G) = G = G, UG». By M(G1,G3) = {co,¢1, ..., ¢m}, we denote
the set of all crossing points between él and ég as the previous section. A linking
number lk(G1,G») between G and G is defined by the following [2].

lk:(é) Gl,G2 ngn ().
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It is known that a linking number is a well-defined ambient isotopy invariant and
we have the following.

Proposition 2.1 A linking number lk(él, C~1’2) is a Vassiliev type invariant of order
1.

Proof. Let G’(dl, d>) be a 2-singular spatial embedding of G with crossing vertices
dy and d. A spatial graph C:’(sl ,€2) is obtained from G’(dl, d>) by making a crossing
vertex d; into a crossing point signed ¢; (i = 1,2). By the definition of the Vassiliev
type invariant,

v(G(dy,ds)) = v(G(+1,+1)) —v(G(+1, —1)) —v(G(~1,+1)) +v(G(-1,-1)) (2.1)

Here we substitute lk(G) for v in (2.1).
In the case that both d; and d» are crossing vertices between GG; and G5, we
have

Ik(G(+1,41)) = lk(G(-1,-1)) + 2
and

Ik(G(+1,-1)) = lk(G(-1,+1)) = lk(G(-1,-1)) + 1.

By the above formulas, we have v(G(d;,dz2)) = 0.
In the case that at least one of d; and ds, for example d;, is on the same
component, we have

Ik(G(+1,e2)) = lk(G(—1,2)), (€2 = *1).

Then we have v(G(d;,dy)) = 0. |

Example 2.2.
(i) Let G = G1 UG, be the spatial graph as is shown in Fig. 5. When we walk along
the Eulerian circuit, we trace edges in order of a, b and c. In this example, we have

Ik(G) =0and H(G) = 2¢.

(ii) Let G’ be the spatial graph obtained from G in Fig. 5 by changing crossing
points such that the signs of all crossing points are +1. Then we have [k(G') = 2¢
and H(G') = 0.

Remark 2.3.
If G = G U G2 is homeomorphic to S' U S* (and have no vertex), it follows that

dé1 (co,ci) + déz (co,ci) = 0.
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Fig. 5.
Then we have
Yy 1 - da(coseq)
H(G) = 5 |- agn(cs)

- ‘zk(él,@)‘.

1 m
5 > son(c:)
=0

3. Results and proofs

At first we show that H(G) is well-defined.

Proposition 3.1. The number H(G’) is independent of the choice of a base point
Co.

Proof. Since the degree of each vertex in Gy (k = 1,2) is in multiples of 4, the
number of edges in it is even. Starting at co, we walk the Eulerian circuit and reach
co on . Then the number of vertices we pass is even. It follows that

dg, (co,cr) +dg, (ck, i) +dg, (ci,c0) =0 (mod 2),
for k =1, 2. Therefore

da(co,ci) =dg(co,cr) +da(er,ci)  (mod 2).
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We have

m

3 (=)o) sgn c;)

i=0

= — Z(_l)dé(CO’Ck)+dé(ck’ci)Sgn(Ci)

=0

1 m
=3 (—1)%aeoen) Z(—l)dé(ck’ci)sg"(ci)
i—0

2

1 m
= = Y (~1)dalered sgn(e;)

i=0

a

Theorem 3.2. The number H(G) is an ambient isotopy invariant for spatial graphs
with special Eulerian circuits.

Proof. It is clear that H(G) is invariant under Reidemeister moves I and IV.

For Reidemeister move II, if two arcs are in the same component, H(G) cannot
be changed after operating the move by its definition. In the case that two arcs are
contained in the different components, we have that

dé(co, ci) = dgl(co, cj)
and
sgn(c;) = —sgn(c;),

where ¢; and c; are crossing points as is shown in Fig. 6 and ¢y is a base point.
Therefore,

(=)l sgn(c;) + (=1)%e 0D sgn(e;) = 0.

It follows that H(G) cannot be changed by Reidemeister move II.

- ~

Fig. 6.

For Reidemeister move III, it is enough to consider two cases; the case that
three arcs are on the same component and the other case that two arcs are on one
component and the third is on the other. If three arcs are on the same component,
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Fig. 7.

H(G) cannot be changed by the definition. In the case that two arcs are on the
same component and the third is on the other, for example, the case in Fig. 7,

dg(co, ) = dg(co, cf)
and
sgn(cr) = sgn(c),) (k=2,3).
Therefore
(<1600 sgn(es) + (<10 sgn(ey)
= (1)1 agn(ch) + (~1)%0(0D sgn(ch).

It follows that H(G) cannot be changed in Fig. 7. For the other cases, we can show
that H(G) cannot be changed similarly.

From here, we consider Reidemeister move V. Since H(G) is invariant under
Reidemeister move IV, we may assume the following; when we walk along the
Eulerian circuit starting at the vertex v and reach v for the first time, we trace
adjacent edges e; and e; as is shown in Fig. 8.

From the property of the Eulerian circuit, the length of the part of the Eulerian
circuit that we walk from v to v in Fig. 8 is odd. Then the number of vertices

between ¢; and c¢; on the part of Eulerian circuit is even. It follows that

dg, (co,ci) =dg (co,cj) (mod 2).

And

da, (co, i) da, (co,cj) (mod 2).
Then we have

da(co,ci) =dg(co,cj)  (mod 2).
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\%
G, . %Cj\

For signs of crossings, we have
sgn(c;) = —sgn(cj).
Therefore, we have
(—D)?elcosgn(e;) + (=1)*a o) sgn(c;) = 0.

By considering for another pair of adjacent crossings similarly, H(G) cannot be
changed by Reidemeister move V. This completes the proof of Theorem 3.2. O

Theorem 3.3. The number H((;) is mot a finite type invariant for spatial graphs
with special Eulerian circuits.

Proof. Let G = G UG> be the singular spatial graph as is shown in Fig. 9. When
we walk along the Eulerian circuit, we trace edges in order of a, b and c. There are
a crossing and a crossing vertex (a double point) between G, and G on the edge
labeled a, and there are n — 1 crossings and n — 1 crossing vertices on c.

By G(1,2,---,n), we denote G in Fig. 9, where the numbers mean crossing
vertices. Let G(e1,€2, -+ ,e,) be the spatial graph obained from G(1,2,--- ,n) by

making a crossing vertex 7 into a crossing point signed ¢; (¢; = £1,1 =1,2,--- n).
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Fig. 9.

By the definition of the Vassiliev type invariant,

HG = Y (-yeree o) (Gler e, en))

ei==%x1,i=1,2,---,n
= Y {0 HG(+H e, ven)
ei=%x1,i=2,---,n

+ (_1)1+n(€2,---,sn)H(é(_1,62, e )Sn))}>

where n(ey,es,- - ,&,) means the number of —1 in {e1,¢e2,--- ,&,}. From here, let
j=mn(ez, - ,e,) and G(e1;j) = G(e1,€2,- - ,&n). The above formula is rewritten
to the following.

H(G) = Y (-1 w1 GHEWLD) + Y () (1 GHEL) (32)

Since the number of vertices from a to b along the Eulerian circuit is even by the
property of the Eulerian circuit, we have

H(G(+5 1)) =%|2—(n—1+"—1—2-7')| - {n_f_j ’ :(g"i’;z”—’?)_m

and

~ 1
H(G(—;j)):§|n—l+n—1—2j|:n_1_j (j=0,1,---,n—1).
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By (3.2) and the above formulas, we have

H(G) = n1Coa (1" 14 Z w1 C5(=1) (n =2 — j)

n—2
+ Y w1 G (=) (n—1-)
=0

n—2 n—2
= (D)"Y G = 1= = 1) = Y i Gy (= 1)
7=0 7=0
n—2 )
= ()" = (1)
7=0
n—1 ]
= (-1 = (3 a1 Ci(=1) = a1 Cra (=)™
7=0
n—1 )
By > w1 Ci(=1)) = {1+ (=1)}" ! =0, we have
7=0
H(G) =2(-1)""t £0.
This completes the proof of Theorem 3.3. O
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